Sharp Inequalities for Maximal Operators on Finite Graphs

نویسندگان

چکیده

Let $$G=(V,E)$$ be a finite graph (here V and E denote the set of vertices edges G respectively) $$M_G$$ centered Hardy–Littlewood maximal operator defined there. We find optimal value $$\mathbf{{C}}_{G,p}$$ such that inequality $$\begin{aligned} \mathrm{Var\,}_{p}M_{G}f\le \mathbf{C}_{G,p}\mathrm{Var\,}_{p}f \end{aligned}$$ holds for every $$f:V\rightarrow {\mathbb {R}},$$ where $$\mathrm{Var\,}_p$$ stands p-variation, when: (i) $$G=K_n$$ (complete graph) $$p\in [\frac{\log (4)}{\log (6)},\infty )$$ or $$G=K_4$$ (0,\infty ; (ii) $$G=S_n$$ (star $$1\ge p\ge \frac{1}{2}$$ (0,\frac{1}{2})$$ $$n\ge C(p)$$ $$G=S_3$$ (1,\infty ).$$ also norm $$\Vert M_{G}\Vert _{2}$$ 3$$ 3.$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Sharp Spectral Inequalities for Schrödinger Operators on Semiaxis

In this paper we obtain sharp Lieb-Thirring inequalities for a Schrödinger operator on semiaxis with a matrix potential and show how they can be used to other related problems. Among them are spectral inequalities on star graphs and spectral inequalities for Schrödinger operators on half-spaces with Robin boundary conditions.

متن کامل

Some sharp inequalities for multilinear integral operators

In this paper, some sharp inequalities for certain multilinear operators related to the Littlewood-Paley operator and the Marcinkiewicz operator are obtained. As an application, we obtain the (L p , L q)-norm inequalities and Morrey spaces boundedness for the multilinear operators.

متن کامل

Lφ Integral Inequalities for Maximal Operators

Sufficient (almost necessary) conditions are given on the weight functions u(·), v(·) for Φ−1 2 [ ∫ Rn Φ2 ( C2(Msf)(x) ) u(x)dx ] ≤ Φ−1 1 [ C1 ∫ Rn Φ1(|f(x)|)v(x)dx ] to hold when Φ1, Φ2 are φ-functions with subadditive Φ1Φ 2 , and Ms (0 ≤ s < n), is the usual fractional maximal operator. §

متن کامل

Sharp Maximal Inequalities for Conditionally Symmetric Martingales and Brownian Motion

Let B = {Bt)t>0 be a standard Brownian motion. For c > 0, k > 0 , let T(c, k) = inî{t > 0: maxs<í Bs cBt > k} , T"(c,k)= inf{r>0: max^, \BS\ c\B,\ > k} . We show that for c > 0 and k > 0, both T(c, k) and T*{c, k) axe finite almost everywhere. Moreover, T(c, k) and T*(c, k) e L if and only if c < pKp 1) for p > 1 , and for all c > 0 when p < 1 . These results have analogues for simple random wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2021

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-021-00625-0