Sharp Inequalities for Maximal Operators on Finite Graphs
نویسندگان
چکیده
Let $$G=(V,E)$$ be a finite graph (here V and E denote the set of vertices edges G respectively) $$M_G$$ centered Hardy–Littlewood maximal operator defined there. We find optimal value $$\mathbf{{C}}_{G,p}$$ such that inequality $$\begin{aligned} \mathrm{Var\,}_{p}M_{G}f\le \mathbf{C}_{G,p}\mathrm{Var\,}_{p}f \end{aligned}$$ holds for every $$f:V\rightarrow {\mathbb {R}},$$ where $$\mathrm{Var\,}_p$$ stands p-variation, when: (i) $$G=K_n$$ (complete graph) $$p\in [\frac{\log (4)}{\log (6)},\infty )$$ or $$G=K_4$$ (0,\infty ; (ii) $$G=S_n$$ (star $$1\ge p\ge \frac{1}{2}$$ (0,\frac{1}{2})$$ $$n\ge C(p)$$ $$G=S_3$$ (1,\infty ).$$ also norm $$\Vert M_{G}\Vert _{2}$$ 3$$ 3.$$
منابع مشابه
On Some Sharp Spectral Inequalities for Schrödinger Operators on Semiaxis
In this paper we obtain sharp Lieb-Thirring inequalities for a Schrödinger operator on semiaxis with a matrix potential and show how they can be used to other related problems. Among them are spectral inequalities on star graphs and spectral inequalities for Schrödinger operators on half-spaces with Robin boundary conditions.
متن کاملSome sharp inequalities for multilinear integral operators
In this paper, some sharp inequalities for certain multilinear operators related to the Littlewood-Paley operator and the Marcinkiewicz operator are obtained. As an application, we obtain the (L p , L q)-norm inequalities and Morrey spaces boundedness for the multilinear operators.
متن کاملLφ Integral Inequalities for Maximal Operators
Sufficient (almost necessary) conditions are given on the weight functions u(·), v(·) for Φ−1 2 [ ∫ Rn Φ2 ( C2(Msf)(x) ) u(x)dx ] ≤ Φ−1 1 [ C1 ∫ Rn Φ1(|f(x)|)v(x)dx ] to hold when Φ1, Φ2 are φ-functions with subadditive Φ1Φ 2 , and Ms (0 ≤ s < n), is the usual fractional maximal operator. §
متن کاملSharp Maximal Inequalities for Conditionally Symmetric Martingales and Brownian Motion
Let B = {Bt)t>0 be a standard Brownian motion. For c > 0, k > 0 , let T(c, k) = inî{t > 0: maxs<í Bs cBt > k} , T"(c,k)= inf{r>0: max^, \BS\ c\B,\ > k} . We show that for c > 0 and k > 0, both T(c, k) and T*{c, k) axe finite almost everywhere. Moreover, T(c, k) and T*(c, k) e L if and only if c < pKp 1) for p > 1 , and for all c > 0 when p < 1 . These results have analogues for simple random wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2021
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-021-00625-0